
UNITED STATES PATENT APPLICATION

DETECTING INCORRECT VERSIONS OF FILES

FIELD

An embodiment of the invention generally relates to computer software. In

particular, an embodiment of the invention generally relates to detecting incorrect versions

of files.

10 BACKGROUND

The development of the ED VAC computer system of 1948 is often cited as the

beginning of the computer era. Since that time, computer systems have evolved into

extremely sophisticated devices, and computer systems may be found in many different

settings. Computer systems typically include a combination of hardware (such as

15 semiconductors, integrated circuits, programmable logic devices, programmable gate

arrays, and circuit boards) and software, also known as computer programs. As advances

in semiconductor processing and computer architecture push the performance of the

computer hardware higher, more sophisticated and complex computer software has

evolved to take advantage of the higher performance of the hardware, resulting in

20 computer systems today that are much more powerful than just a few years ago.

As the sophistication and complexity of computer software increase, the more

difficult the software is to debug. Bugs are problems, faults, or errors in a computer

program. Locating, analyzing, and correcting suspected faults in a computer program is a

ROC920030419US1

process known as "debugging." Typically, a programmer uses another computer program

commonly known as a "debugger" to debug a program under development.

Conventional debuggers typically support two primary operations to assist a

computer programmer. A first operation supported by conventional debuggers is a "step"

5 function, which permits a computer programmer to process instructions (also known as

"statements") in a computer program one-by-one and see the results upon completion of

each instruction. While the step operation provides a programmer with a large amount of

information about a program during its execution, stepping through hundreds or thousands

of program instructions can be extremely tedious and time consuming and may require a

10 programmer to step through many program instructions that are known to be error-free

before a set of instructions to be analyzed are executed.

To address this difficulty, a second operation supported by conventional debuggers

is a breakpoint operation, which permits a computer programmer to identify with a

breakpoint a precise instruction for which it is desired to halt execution of a computer

15 program during execution. As a result, when a computer program is executed by a

debugger, the program executes in a normal fashion until a breakpoint is reached. The

debugger then stops execution of the program and displays the results of the program to

the programmer for analysis.

Typically, step operations and breakpoints are used together to simplify the

20 debugging process. Specifically, a common debugging operation is to set a breakpoint at

the beginning of a desired set of instructions to be analyzed and then begin executing the

program. Once the breakpoint is reached, the debugger halts the program, and the

programmer then steps through the desired set of instructions line-by-line using the step

operation. Consequently, a programmer is able to more quickly isolate and analyze a

25 particular set of instructions without needing to step through irrelevant portions of a

computer program.

Computer programs being debugged are either compiled for execution by a

compiler or executed by an interpreter. One example of an interpreter is the Java Virtual

Machine (JVM), which employs a class loader to load classes used by the program being

ROC920030419US1 2

debugged on an as-needed basis. The classpath tells the class loader where to find third-

party and user-defined classes. Classpath entries may be directories that contain classes

not in a package, the package root directory for classes in a package, or archive files (e.g.

.zip or jar files) that contain classes. The class loader loads classes in the order they

appear in the classpath. For example, starting with the first classpath entry, the class

loader visits each specified directory or archive file attempting to find the class to load.

The first class found with the proper name is loaded, and any remaining classpath entries

are ignored.

The classpath can become a source of great frustration and annoyance for the user

because as the number of dependent third-party and user-defined classes increases for the

program being debugged, the classpath becomes a dumping ground for every conceivable

directory and archive file, and the risk becomes greater that the class contains duplicate

class entries. Thus, the user can experience great difficulty in determining which class the

class loader will load first. For example, the user may append a directory to the classpath

in attempt to get the latest version of a class loaded into the program being debugged, but

the user may be unaware that another version of the class is located in a directory of

higher precedence in the classpath.

Without a better way to handle classpaths, the debugging process will continue to

be a difficult and time-consuming task, which delays the introduction of software products

and increases their costs. Although the aforementioned problems have been described in

the context of the Java class loader and programs under debug, they can occur in any

compiler or interpreter, in any type of computer language, and in non-debug environments

as well as in debug environments..

SUMMARY

A method, apparatus, system, and signal-bearing medium are provided that in an

embodiment issue a warning if a file to be used is an older version. In an embodiment, the

warning includes an identification of the location of a newer version of the file. In an

ROC920030419US1 3

embodiment, the file is a class, and the old and new versions are found using a classpath,

but in other embodiments any type of file or other object may be used. In this way, the

use of incorrect versions of files may be detected and avoided.

5 BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 depicts a block diagram of an example system for implementing an

embodiment of the invention.

Fig. 2 depicts a pictorial representation of an example user interface for accessing

a classpath, according to an embodiment of the invention.

10 Fig. 3 depicts a pictorial representation of an example user interface for a debug

controller, according to an embodiment of the invention.

Fig. 4 depicts a pictorial representation of an example user interface for a debugger

when providing a notification of a possible classpath error, according to an embodiment of

the invention.

15 Fig. 5 A depicts a flowchart of example processing for a debug controller,

according to an embodiment of the invention.

Fig. 5B depicts a flowchart of further example processing for the debug controller,

according to an embodiment of the invention.

20

DETAILED DESCRIPTION

In an embodiment, a debug controller warns the user if a file to be used is an old

version and a newer version is available. The warning may include an identification of

the location of the newer version of the file. In an embodiment, the file is a class, and the

25 old and new versions are found using a classpath, but in other embodiments any type of

ROC920030419US1

file or other object may be used. In this way, the use of incorrect versions of files may be

detected and avoided.

Referring to the Drawing, wherein like numbers denote like parts throughout the

several views, Fig. 1 depicts a high-level block diagram representation of a computer

5 system 100, according to an embodiment of the present invention. The major components

of the computer system 100 include one or more processors 101, a main memory 102, a

terminal interface 111, a storage interface 112, an I/O (Input/Output) device interface 113,

and communications/network interfaces 114, all of which are coupled for inter-component

communication via a memory bus 103, an I/O bus 104, and an I/O bus interface unit 105.

10 The computer system 100 contains one or more general-purpose programmable

central processing units (CPUs) 101A, 101B, 101C, and 101D, herein generically referred

to as the processor 101. In an embodiment, the computer system 100 contains multiple

processors typical of a relatively large system; however, in another embodiment the

computer system 100 may alternatively be a single CPU system. Each processor 101

15 executes instructions stored in the main memory 102 and may include one or more levels

of on-board cache.

The main memory 102 is a random-access semiconductor memory for storing data

and programs. The main memory 102 is conceptually a single monolithic entity, but in

other embodiments the main memory 102 is a more complex arrangement, such as a

20 hierarchy of caches and other memory devices. For example, memory may exist in

multiple levels of caches, and these caches may be further divided by function, so that one

cache holds instructions while another holds non-instruction data, which is used by the

processor or processors. Memory may further be distributed and associated with different

CPUs or sets of CPUs, as is known in any of various so-called non-uniform memory

25 access (NUMA) computer architectures.

The memory 102 includes a debug controller 168 and a program 172. Although

the debug controller 168 and the program 172 are illustrated as being contained within the

ROC920030419US1 5

memory 102 in the computer system 100, in other embodiments some or all of them may

be on different computer systems and may be accessed remotely, e.g., via the network

130. The computer system 100 may use virtual addressing mechanisms that allow the

programs of the computer system 100 to behave as if they only have access to a large,

5 single storage entity instead of access to multiple, smaller storage entities. Thus, while the

debug controller 168 and the program 172 are illustrated as residing in the memory 102,

these elements are not necessarily all completely contained in the same storage device at

the same time.

The debug controller 168 is used to debug the program 172. The debug controller

168 includes a classpath controller 170. In another embodiment, the classpath controller

170 is separate from the debug controller 168. In another embodiment, the classpath

controller 170 is implemented as a class loader or as a portion of a class loader that loads

classes that may be used by the program 172. In an embodiment, the classpath controller

170 includes instructions capable of executing on the processor 101 or statements capable

of being interpreted by instructions executing on the processor 101 to access or

communicate with the user interfaces as further described below with reference to Figs. 2,

3, and 4, and to perform the functions as further described below with reference to Figs.

5 A and 5B. In another embodiment, the classpath controller 170 may be implemented in

microcode. In yet another embodiment, the classpath controller 170 may be implemented

in hardware via logic gates and/or other appropriate hardware techniques, in lieu of or in

addition to a processor-based system.

In an embodiment, the program 172 includes instructions or statements capable of

being interpreted or compiled to execute on the processor 101. The program 172 may be

debugged by the debug controller 168.

25 The memory bus 103 provides a data communication path for transferring data

among the processors 101, the main memory 102, and the I/O bus interface unit 105. The

I/O bus interface unit 105 is further coupled to the system I/O bus 104 for transferring

data to and from the various I/O units. The I/O bus interface unit 105 communicates with

ROC920030419US1 6

10

15

20

multiple I/O interface units 111, 112,113, and 114, which are also known as I/O

processors (IOPs) or I/O adapters (10As), through the system I/O bus 104. The system

I/O bus 104 may be, e.g., an industry standard PCI (Peripheral Component Interconnect)

bus, or any other appropriate bus technology. The I/O interface units support

5 communication with a variety of storage and I/O devices. For example, the terminal

interface unit 111 supports the attachment of one or more user terminals 121, 122, 123,

and 124.

The storage interface unit 112 supports the attachment of one or more direct access

storage devices (DASD) 125,126, and 127 (which are typically rotating magnetic disk

10 drive storage devices, although they could alternatively be other devices, including arrays

of disk drives configured to appear as a single large storage device to a host). Various

portions of the contents of the DASD 125,126, and 127 may be loaded and stored from/to

the memory 102 as needed.

The I/O and other device interface 113 provides an interface to any of various

15 other input/output devices or devices of other types. Two such devices, the printer 128

and the fax machine 129, are shown in the exemplary embodiment of Fig. 1, but in other

embodiment many other such devices may exist, which may be of differing types. The

network interface 114 provides one or more communications paths from the computer

system 100 to other digital devices and computer systems; such paths may include, e.g.,

20 one or more networks 130.

Although the memory bus 103 is shown in Fig. 1 as a relatively simple, single bus

structure providing a direct communication path among the processors 101, the main

memory 102, and the I/O bus interface 105, in fact the memory bus 103 may comprise

multiple different buses or communication paths, which may be arranged in any of various

25 forms, such as point-to-point links in hierarchical, star or web configurations, multiple

hierarchical buses, parallel and redundant paths, etc. Furthermore, while the I/O bus

interface 105 and the I/O bus 104 are shown as single respective units, the computer

system 100 may in fact contain multiple I/O bus interface units 105 and/or multiple I/O

ROC920030419US1 7

buses 104. While multiple I/O interface units are shown, which separate the system I/O

bus 104 from various communications paths running to the various I/O devices, in other

embodiments some or all of the I/O devices are connected directly to one or more system

I/O buses.

5 The network 130 may be any suitable network or combination of networks and

may support any appropriate protocol suitable for communication of data and/or code

to/from the computer system 100. In various embodiments, the network 130 may

represent a storage device or a combination of storage devices, either connected directly

or indirectly to the computer system 100. In an embodiment, the network 130 may

10 support Infiniband. In another embodiment, the network 130 may support wireless

communications. In another embodiment, the network 130 may support hard-wired

communications, such as a telephone line or cable. In another embodiment, the network

130 may support the Ethernet IEEE (Institute of Electrical and Electronics Engineers)

802.3x specification. In another embodiment, the network 130 may be the Internet and

15 may support IP (Internet Protocol). In another embodiment, the network 130 may be a

local area network (LAN) or a wide area network (WAN). In another embodiment, the

network 130 may be a hotspot service provider network. In another embodiment, the

network 130 may be an intranet. In another embodiment, the network 130 may be a

GPRS (General Packet Radio Service) network. In another embodiment, the network 130

20 may be a FRS (Family Radio Service) network. In another embodiment, the network 130

may be any appropriate cellular data network or cell-based radio network technology. In

another embodiment, the network 130 may be an IEEE 802.1 IB wireless network. In still

another embodiment, the network 130 may be any suitable network or combination of

networks. Although one network 130 is shown, in other embodiments any number of

25 networks (of the same or different types) may be present.

The computer system 100 depicted in Fig. 1 has multiple attached terminals 121,

122,123, and 124, such as might be typical of a multi-user "mainframe" computer system.

Typically, in such a case the actual number of attached devices is greater than those

ROC920030419US1

shown in Fig. 1, although the present invention is not limited to systems of any particular

size. The computer system 100 may alternatively be a single-user system, typically

containing only a single user display and keyboard input, or might be a server or similar

device which has little or no direct user interface, but receives requests from other

5 computer systems (clients). In other embodiments, the computer system 100 may be

implemented as a personal computer, portable computer, laptop or notebook computer,

PDA (Personal Digital Assistant), tablet computer, pocket computer, telephone, pager,

automobile, teleconferencing system, appliance, or any other appropriate type of

electronic device.

It should be understood that Fig. 1 is intended to depict the representative major

components of the computer system 100 at a high level, that individual components may

have greater complexity that represented in Fig. 1, that components other than or in

addition to those shown in Fig. 1 may be present, and that the number, type, and

configuration of such components may vary. Several particular examples of such

additional complexity or additional variations are disclosed herein; it being understood

that these are by way of example only and are not necessarily the only such variations.

The various software components illustrated in Fig. 1 and implementing various

embodiments of the invention may be implemented in a number of manners, including

using various computer software applications, routines, components, programs, objects,

20 modules, data structures, etc., referred to hereinafter as "computer programs," or simply

"programs." The computer programs typically comprise one or more instructions that are

resident at various times in various memory and storage devices in the computer system

100, and that, when read and executed by one or more processors 101 in the computer

system 100, cause the computer system 100 to perform the steps necessary to execute

25 steps or elements embodying the various aspects of an embodiment of the invention.

Moreover, while embodiments of the invention have and hereinafter will be

described in the context of fully functioning computer systems, the various embodiments

of the invention are capable of being distributed as a program product in a variety of

ROC920030419US1 9

10

15

forms, and the invention applies equally regardless of the particular type of signal-bearing

medium used to actually carry out the distribution. The programs defining the functions

of this embodiment may be delivered to the computer system 100 via a variety of signal-

bearing media, which include, but are not limited to:

5 (1) information permanently stored on a non-rewriteable storage medium, e.g., a

read-only memory device attached to or within a computer system, such as a CD-ROM

readable by a CD-ROM drive;

(2) alterable information stored on a rewriteable storage medium, e.g., a hard disk

drive (e.g., DASD 125, 126, or 127) or diskette; or

10 (3) information conveyed to the computer system 100 by a communications

medium, such as through a computer or a telephone network, e.g., the network 130,

including wireless communications.

Such signal-bearing media, when carrying machine-readable instructions that

direct the functions of the present invention, represent embodiments of the present

15 invention.

In addition, various programs described hereinafter may be identified based upon

the application for which they are implemented in a specific embodiment of the invention.

But, any particular program nomenclature that follows is used merely for convenience,

and thus embodiments of the invention should not be limited to use solely in any specific

20 application identified and/or implied by such nomenclature.

The exemplary environments illustrated in Fig. 1 are not intended to limit the

present invention. Indeed, other alternative hardware and/or software environments may

be used without departing from the scope of the invention.

25

Fig. 2 depicts a pictorial representation of an example user interface 200 for

accessing a classpath, according to an embodiment of the invention. The user interface

ROC920030419US1 10

200 includes a user variables dialog 205 and a system variables dialog 210. One of the

system variables is a classpath 215. The classpath 215 includes any number of entries that

specify to the classpath controller 170 the location or locations to look for third-party and

user-defined classes. In another embodiment, the classes are not restricted to third-party

5 or user-defined classes and may be any type of class. In another embodiment, the class

path is not restricted to classes and may specify the locations of an object, database,

method, program, or any other type of file.

Classpath entries may specify directories, archive files, or any other type of

locations. The classpath controller 170 or other class loader loads classes, files, or objects

10 in the order they appear in the classpath. For example, starting with the first classpath

entry, the class loader visits each specified directory or archive file attempting to find the

class, file, or other object to load. The first class found with the proper name is loaded,

and any remaining classpath entries are ignored.

In the example shown, the value of the first entry in the classpath 215 is

15 "c:\debugger\jt400.jar," which indicates the directory and jar file in which the classpath

controller 170 will first search for classes. The data and user interface elements illustrated

in Fig. 2 are exemplary only, and in other embodiments any appropriate data and user

interface elements may be used.

Fig. 3 depicts a pictorial representation of an example user interface 300 for the

20 debug controller 168, according to an embodiment of the invention. The user interface

300 includes a classes under debug display 305 and a code under debug display 310. The

classes under debug display 305 illustrates example classes that are used or are anticipated

to be used by the program 172. The icon 320 indicates that the classpath controller 170

suspects that the associated class ("class b" in this example) may be the incorrect version.

25 The classpath controller 170 determines that the associated class may be the incorrect

version as further described below with reference to Figs. 5A and 5B. In response to the

user selecting the icon 320, or in response to any other appropriate command or stimulus,

the debug controller 168 obtains further information regarding the warning from the

classpath controller 170 and displays the user interface of Fig. 4, as further described
ROC920030419US1 ' " 11

below. The code under debug display 310 illustrates example contents of the program

172.

Fig. 4 depicts a pictorial representation of an example user interface 400 for the

debug controller 168 and the classpath controller 170 when providing a notification of a

5 possible classpath error, according to an embodiment of the invention. In an embodiment,

the debug controller 168 displays the user interface 400 in response to the selection of the

icon 320 (Fig. 3), displays the user interface 400 automatically in response to detecting a

class that may be the incorrect version, or displays the user interface 400 in response to

any other appropriate command or stimulus.

10 The user interface 400 includes a notification 425, which includes more

information about the warning 320. The notification 425 indicates that a newer version of

one of the classes displayed in the classes under debug display 305 was found. The

notification 425 further includes the location of the newer version, which in this example

is "/root/username." Although the notification 425 is illustrated as being a popup window,

15 in other embodiments, the notification may be implemented as message, whether text or

oral, or any other appropriate notification. Although the warning 320 and the notification

425 are illustrated as being different elements in the user interfaces of Fig. 4 and 5, in

other embodiments, they may both be included in the same element. The data and user

interface elements of Fig. 4 are exemplary only, and in other embodiments any

20 appropriate data and user interface elements may be used.

Figs. 5 A and 5B depict flowcharts of example processing for a classpath controller

170, according to an embodiment of the invention. Control begins at block 500. Control

then continues to block 505 where the classpath controller 170 receives an event. Control

then continues to block 510 where the classpath controller 170 determines whether the

25 received event is an add class event, indicating that a class is being added to the execution

of the program 172.

If the determination at block 510 is true, then the event is an add class event, so

control continues to block 515 where the classpath controller 170 begins a loop that is

ROC920030419US1 12

executed for each directory in the classpath 215 in order. So long as there are more

directories remaining to be processed by the loop, control continues from block 515 to

block 520 where the classpath controller 170 determines whether a class has been added

to debug (see block 530, as further described below). If the determination at block 520 is

false, then a class has not been added to debug, so control continues to block 525 where

the classpath controller 170 determines whether the class being added by the add class

event exists in the current directory being processed by the loop.

If the determination at block 525 is true, then the class exists in the current

directory, so control continues to block 530 where the classpath controller 170 adds the

class to debug (which will cause the later determination at block 520 to be true). Control

then returns to block 515, as previously described above.

If the determination at block 525 is false, then the class does not exist in the

current directory, so control returns to block 515, as previously described above.

If the determination at block 520 is true, then the class has been added to debug, so

control continues from block 520 to block 555 in Fig. 5B where the classpath controller

170 determines whether the current class exists in the current directory of the loop. If the

determination at block 555 is true, then the current class exists in the current directory, so

control continues to block 560 where the classpath controller 170 determines whether the

current class is newer than the class that was previously added to debug (at block 530, as

described above). If the determination at block 560 is true, then the current class is newer

than the previously-added class, so control continues to block 565 where the classpath

controller 170 turns on the warning indicator 320, as previously described above with

reference to Fig. 3. In this way, the classpath controller 170 finds a class in a directory

that is later in the classpath than the class that was previously added to debug.

Control then continues to block 570 where the classpath controller 170 saves the

reason for the warning indicator, which may be later displayed in the notification 425, as

previously described above with reference to Fig. 4. Control then returns to block 515, as

previously described above.

ROC920030419US1 13

If the determination at block 560 is false, then the current class is not newer than

the previously-added class, so control continues to block 575 where the classpath

controller 170 determines whether the current class is owned by the user doing the debug

and the previously added class is not owned by the user doing the debug. If the

determination at block 575 is true, then control continues to block 565, as previously

described above.

If the determination at block 575 is false, then control returns to block 515 in Fig.

5 A, as previously described above.

If the determination at block 555 is false, then the current class does not exist in

the current directory, so control returns from block 555 to block 515 in Fig. 5A, as

previously described above.

When no more directories remain to be processed by the loop that begins at block

515, control returns from block 515 to block 505, as previously described above.

If the determination at block 510 is false, then the received event was not an add

class event, so control continues to block 535 where the classpath controller 170 processes

other events. Control then returns to block 505, as previously described above.

In the previous detailed description of exemplary embodiments of the invention,

reference was made to the accompanying drawings (where like numbers represent like

elements), which form a part hereof, and in which is shown by way of illustration specific

exemplary embodiments in which the invention may be practiced. These embodiments

were described in sufficient detail to enable those skilled in the art to practice the

invention, but other embodiments may be utilized and logical, mechanical, electrical, and

other changes may be made without departing from the scope of the present invention.

Different instances of the word "embodiment" as used within this specification do not

necessarily refer to the same embodiment, but they may. The previous detailed

description is, therefore, not to be taken in a limiting sense, and the scope of the present

invention is defined only by the appended claims.

ROC920030419US1 14

In the previous description, numerous specific details were set forth to provide a

thorough understanding of the invention. But, the invention may be practiced without

these specific details. In other instances, well-known circuits, structures, and techniques

have not been shown in detail in order not to obscure the invention.

ROC920030419US1 15

